The protein tyrosine phosphatase SHP-2 negatively regulates ciliary neurotrophic factor induction of gene expression
نویسندگان
چکیده
Ciliary neurotrophic factor, along with other neuropoietic cytokines, signals through the shared receptor subunit gp130 [1-3], leading to the tyrosine phosphorylation of a number of substrates [4,5], including the transcription factors STAT1 and STAT3 and the protein tyrosine phosphatase SHP-2 [6,7] [8]. SHP-2 (also known as PTP1D, SHPTP2, Syp and PTP2C) is a positive regulatory molecule required for the activation of the mitogen-activated protein kinase pathway and the stimulation of gene expression in response to epidermal growth factor, insulin and platelet-derived growth factor stimulation [9-11]. We have previously shown that cytokines that signal via the gp130 receptor subunit activate transcription of the vasoactive intestinal peptide (VIP) gene through a 180 bp cytokine response element (CyRE) [12,13]. To characterize the role of SHP-2 in the regulation of gp130-stimulated gene expression, we examined the regulation of the VIP CyRE in two systems that prevented ligand-dependent SHP-2 phosphorylation. Inhibition of SHP-2, either by mutating the tyrosine residue in gp130 that mediates the SHP-2 interaction, or by expression of dominant-negative SHP-2, resulted in dramatic increases in gp130-dependent gene expression, through the VIP CyRE and more specifically through multimerized STAT-binding sites. These data suggest that SHP-2 has a negative role in gp130 signaling by modulating STAT-mediated transcriptional activation.
منابع مشابه
Interaction of the tyrosine phosphatase SHP-2 with Gab2 regulates Rho-dependent activation of the c-fos serum response element by interleukin-2.
Gab2 (Grb2-associated binder-2), a member of the IRS (insulin receptor substrate)/Gab family of adapter proteins, undergoes tyrosine phosphorylation in response to cytokine or growth factor stimulation and serves as a docking platform for many signal transduction effectors, including the tyrosine phosphatase SHP-2 [SH2 (Src homology 2)-domain-containing tyrosine phosphatase]. Here, we report th...
متن کاملSHP-1 negatively regulates neuronal survival by functioning as a TrkA phosphatase
Nerve growth factor (NGF) mediates the survival and differentiation of neurons by stimulating the tyrosine kinase activity of the TrkA/NGF receptor. Here, we identify SHP-1 as a phosphotyrosine phosphatase that negatively regulates TrkA. SHP-1 formed complexes with TrkA at Y490, and dephosphorylated it at Y674/675. Expression of SHP-1 in sympathetic neurons induced apoptosis and TrkA dephosphor...
متن کاملSrc homology 2 (SH2) domain containing protein tyrosine phosphatase-1 (SHP-1) dephosphorylates VEGF Receptor-2 and attenuates endothelial DNA synthesis, but not migration*
BACKGROUND Vascular endothelial growth factor receptor-2 (VEGFR-2, KDR), a receptor tyrosine kinase, regulates mitogenic, chemotactic, hyperpermeability, and survival signals in vascular endothelial cells in response to its ligand vascular permeability factor/ vascular endothelial growth factor (VPF/VEGF). SHP-1 is a protein tyrosine phosphatase known to negatively regulate signaling from recep...
متن کاملDominant negative variants of the SHP-2 tyrosine phosphatase inhibit prolactin activation of Jak2 (janus kinase 2) and induction of Stat5 (signal transducer and activator of transcription 5)-dependent transcription.
PRL plays a central role in the regulation of milk protein gene expression in mammary epithelial cells and in the growth and differentiation of lymphocytes. It confers its activity through binding to a specific transmembrane, class I hematopoietic receptor. Ligand binding leads to receptor dimerization and activation of the tyrosine kinase Jak (janus kinase) 2, associated with the membrane-prox...
متن کاملSHP-1 expression in avian mixed neural/glial cultures.
The central nervous system response to injury includes astrocyte proliferation and hypertrophy as well as microglial activation and proliferation. However, not all glial cells enter the cell cycle following damage, and the mechanism that determines which glial cells will proliferate and which will remain quiescent has yet to be elucidated. Protein tyrosine phosphorylation has been shown to play...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 7 شماره
صفحات -
تاریخ انتشار 1997